本文主要介绍 milk-v duo原厂Linux_SDK 编译生成 fip.bin 流程。
原厂相关的简单介绍链接:CV18(1x/0x) 裸烧与非裸烧升级使用手册 — CvitekBareandNon-BareProcessorBurningUpgradeOperationGuide master 文档
1、编译前准备
新版本 SDK 通过 build_milkv.sh 脚本来实现一键编译。
MILKV_BOARD_CONFIG=${MILKV_BOARD_DIR}/boardconfig-${MILKV_BOARD}.sh
function prepare_env()
{
source ${MILKV_BOARD_CONFIG}
source build/${MV_BUILD_ENV} > /dev/null 2>&1
defconfig ${MV_BOARD_LINK} > /dev/null 2>&1
echo "OUTPUT_DIR: ${OUTPUT_DIR}" # @build/milkvsetup.sh
}
其中: - ${MV_BOARD_CPU}=cv1800b - ${MV_VENDOR}=milkv - ${MILKV_BOARD_DIR}=milkv - ${MILKV_BOARD}=milkv-duo - ${MV_BUILD_ENV}=milkvsetup.sh - ${MV_BOARD_LINK}=cv1800b_milkv_duo_sd - OUTPUT_DIR: /home/share/samba/risc-v/duo-buildroot-sdk/install/soc_cv1800b_milkv_duo_sd
这些变量后续都会用到
README.md 中也有介绍分步编译介绍
export MILKV_BOARD=milkv-duo
source milkv/boardconfig-milkv-duo.sh
source build/milkvsetup.sh
defconfig cv1800b_milkv_duo_sd
clean_all
build_all
pack_sd_image
生成的固件位置: install/soc_cv1800b_milkv_duo_sd/milkv-duo.img
。build_milkv.sh 也是一步一步调用这些函数。
2、编译入口
总的编译命令,可以不调用 clean_all
函数,不然每次都要全编译。
function milkv_duo_build()
{
# clean old img
old_image_count=`ls ${OUTPUT_DIR}/*.img* | wc -l`
if [ ${old_image_count} -ge 0 ]; then
pushd ${OUTPUT_DIR}
rm -rf *.img*
popd
fi
clean_all
build_all
if [ $? -eq 0 ]; then
print_info "Build board ${MILKV_BOARD} success!"
else
print_err "Build board ${MILKV_BOARD} failed!"
exit 1
fi
}
重点看一下 build_all
函数,位于 build/milkvsetup.sh 文件中
function build_all()
{
# build bsp
build_uboot || return $?
build_kernel || return $?
build_middleware || return $?
pack_access_guard_turnkey_app || return $?
pack_ipc_turnkey_app || return $?
pack_boot || return $?
pack_cfg || return $?
pack_rootfs || return $?
pack_data
pack_system || return $?
copy_tools
pack_upgrade
}
根据上面函数,先调用 build_uboot
函数。
3、uboot编译
build_uboot
函数在 build/cvisetup.sh 文件中定义
function build_uboot()
{(
print_notice "Run ${FUNCNAME[0]}() function"
_build_uboot_env
_build_opensbi_env
_link_uboot_logo
cd "$BUILD_PATH" || return
[[ "$CHIP_ARCH" == CV182X ]] || [[ "$CHIP_ARCH" == CV183X ]] && \
cp -f "$OUTPUT_DIR"/fip_pre/fip_pre_${ATF_KEY_SEL}.bin \
"$OUTPUT_DIR"/fip_pre/fip_pre.bin
make u-boot
)}
- 查看 build/Makefile 文件中 203 行 u-boot 依赖 u-boot-dep
u-boot: u-boot-dep
继续找 u-boot-dep 。。。(文件真多啊。。。) 根据 build/.config 中定义了 CONFIG_FIP_V2=y
找到 scripts/fip_v2.mk 文件 40 行
ifeq (${CONFIG_FIP_V1},y)
include scripts/fip_v1.mk
else ifeq (${CONFIG_FIP_V2},y)
include scripts/fip_v2.mk
else
$(error no fip version)
endif
flp_v2.mk
u-boot-dep: fsbl-build ${OUTPUT_DIR}/elf
$(call print_target)
ifeq ($(call qstrip,${CONFIG_ARCH}),riscv)
${Q}cp ${OPENSBI_PATH}/build/platform/generic/firmware/fw_payload.bin ${OUTPUT_DIR}/fw_payload_uboot.bin
${Q}cp ${OPENSBI_PATH}/build/platform/generic/firmware/fw_payload.elf ${OUTPUT_DIR}/elf/fw_payload_uboot.elf
endif
- u-boot-dep 又依赖 fsbl-build fsbl-build 定义在 scripts/fip_v2.mk 文件 28 行
ifeq ($(call qstrip,${CONFIG_ARCH}),riscv)
fsbl-build: opensbi
endif
ifeq (${CONFIG_ENABLE_FREERTOS},y)
fsbl-build: rtos
fsbl%: export BLCP_2ND_PATH=${FREERTOS_PATH}/cvitek/install/bin/cvirtos.bin
fsbl%: export RTOS_DUMP_PRINT_ENABLE=$(CONFIG_ENABLE_RTOS_DUMP_PRINT)
fsbl%: export RTOS_DUMP_PRINT_SZ_IDX=$(CONFIG_DUMP_PRINT_SZ_IDX)
fsbl%: export RTOS_FAST_IMAGE_TYPE=${CONFIG_FAST_IMAGE_TYPE}
fsbl%: export RTOS_ENABLE_FREERTOS=${CONFIG_ENABLE_FREERTOS}
endif
fsbl%: export FSBL_SECURE_BOOT_SUPPORT=${CONFIG_FSBL_SECURE_BOOT_SUPPORT}
fsbl%: export ARCH=$(call qstrip,${CONFIG_ARCH})
fsbl%: export OD_CLK_SEL=${CONFIG_OD_CLK_SEL}
fsbl%: export VC_CLK_OVERDRIVE=${CONFIG_VC_CLK_OVERDRIVE}
fsbl-build: u-boot-build memory-map
$(call print_target)
${Q}mkdir -p ${FSBL_PATH}/build
${Q}ln -snrf -t ${FSBL_PATH}/build ${CVI_BOARD_MEMMAP_H_PATH}
${Q}$(MAKE) -j${NPROC} -C ${FSBL_PATH} O=${FSBL_OUTPUT_PATH} BLCP_2ND_PATH=${BLCP_2ND_PATH} \
LOADER_2ND_PATH=${UBOOT_PATH}/${UBOOT_OUTPUT_FOLDER}/u-boot-raw.bin
${Q}cp ${FSBL_OUTPUT_PATH}/fip.bin ${OUTPUT_DIR}/
又依赖 opensbi
opensbi: export CROSS_COMPILE=$(CONFIG_CROSS_COMPILE_SDK)
opensbi: u-boot-build
$(call print_target)
${Q}$(MAKE) -j${NPROC} -C ${OPENSBI_PATH} PLATFORM=generic \
FW_PAYLOAD_PATH=${UBOOT_PATH}/${UBOOT_OUTPUT_FOLDER}/u-boot-raw.bin \
FW_FDT_PATH=${UBOOT_PATH}/${UBOOT_OUTPUT_FOLDER}/arch/riscv/dts/${CHIP}_${BOARD}.dtb
又依赖 u-boot-build
u-boot-build: memory-map
u-boot-build: u-boot-dts
u-boot-build: ${UBOOT_PATH}/${UBOOT_OUTPUT_FOLDER} ${UBOOT_CVIPART_DEP} ${UBOOT_OUTPUT_CONFIG_PATH}
$(call print_target)
${Q}ln -snrf ${CVI_BOARD_MEMMAP_H_PATH} ${UBOOT_PATH}/include/
${Q}rm -f ${UBOOT_CVI_BOARD_INIT_PATH}
${Q}ln -s ${BUILD_PATH}/boards/${CHIP_ARCH_L}/${PROJECT_FULLNAME}/u-boot/cvi_board_init.c ${UBOOT_CVI_BOARD_INIT_PATH}
${Q}rm -f ${UBOOT_CVITEK_PATH}
${Q}ln -s ${BUILD_PATH}/boards/${CHIP_ARCH_L}/${PROJECT_FULLNAME}/u-boot/cvitek.h ${UBOOT_CVITEK_PATH}
${Q}$(MAKE) -j${NPROC} -C ${UBOOT_PATH} olddefconfig
${Q}$(MAKE) -j${NPROC} -C ${UBOOT_PATH} all
${Q}cat ${UBOOT_PATH}/${UBOOT_OUTPUT_FOLDER}/u-boot.bin > ${UBOOT_PATH}/${UBOOT_OUTPUT_FOLDER}/u-boot-raw.bin
然后依赖 u-boot-dts
u-boot-dts:
$(call print_target)
ifeq ($(UBOOT_SRC), u-boot-2021.10)
# U-boot doesn't has arch/arm64
ifeq ($(ARCH), arm64)
${Q}find ${BUILD_PATH}/boards/${CHIP_ARCH_L} \
\( -path "*linux/*.dts*" -o -path "*dts_${ARCH}/*.dts*" \) \
-exec cp {} ${UBOOT_PATH}/arch/arm/dts/ \;
${Q}find ${DTS_DEFATUL_PATHS} -name *.dts* -exec cp {} ${UBOOT_PATH}/arch/arm/dts/ \;
else
${Q}find ${BUILD_PATH}/boards/${CHIP_ARCH_L} \
\( -path "*linux/*.dts*" -o -path "*dts_${ARCH}/*.dts*" \) \
-exec cp {} ${UBOOT_PATH}/arch/${ARCH}/dts/ \;
${Q}find ${DTS_DEFATUL_PATHS} -name *.dts* -exec cp {} ${UBOOT_PATH}/arch/${ARCH}/dts/ \;
endif
endif
最终执行的命令为:
find /home/share/samba/risc-v/duo-buildroot-sdk/build/boards/cv180x \
\( -path "*linux/*.dts*" -o -path "*dts_riscv/*.dts*" \) \
-exec cp {} /home/share/samba/risc-v/duo-buildroot-sdk/u-boot-2021.10/arch/riscv/dts/ \;
find /home/share/samba/risc-v/duo-buildroot-sdk/build/boards/default/dts/cv180x /home/share/samba/risc-v/duo-buildroot-sdk/build/boards/default/dts/cv180x_riscv -name *.dts* -exec cp {} /home/share/samba/risc-v/duo-buildroot-sdk/u-boot-2021.10/arch/riscv/dts/ \;
在 /home/share/samba/risc-v/duo-buildroot-sdk/u-boot-2021.10/arch/riscv/dts
目录下执行 tree
命令,目录下 cv180x 和 cv1801c 开头的文件都是从新 copy 过来的。我们理论上用的是 cv1800b 相关的 cv1800b_milkv_duo_sd.dts
这个文件。
$ tree
.
|-- Makefile
|-- ae350-u-boot.dtsi
|-- ae350_32.dts
|-- ae350_64.dts
|-- binman.dtsi
|-- cv1800b_milkv_duo_sd.dts
|-- cv1800b_sophpi_duo_sd.dts
|-- cv1800b_wdmb_0008a_spinor.dts
|-- cv1800b_wevb_0008a_spinor.dts
|-- cv1800c_wevb_0009a_spinor.dts
|-- cv1801b_wevb_0008a_spinor.dts
|-- cv1801c_wdmb_0009a_spinor.dts
|-- cv1801c_wevb_0009a_spinand.dts
|-- cv1801c_wevb_0009a_spinor.dts
|-- cv180x_asic_bga.dtsi
|-- cv180x_asic_qfn.dtsi
|-- cv180x_asic_sd.dtsi
|-- cv180x_asic_spinand.dtsi
|-- cv180x_asic_spinor.dtsi
|-- cv180x_base.dtsi
|-- cv180x_base_riscv.dtsi
|-- cv180x_default_memmap.dtsi
|-- cv180x_fpga.dts
|-- cv180x_palladium.dts
|-- cv180zb_wdmb_0008a_spinor.dts
|-- cv180zb_wevb_0008a_spinor.dts
|-- fu540-c000-u-boot.dtsi
|-- fu540-c000.dtsi
|-- fu540-hifive-unleashed-a00-ddr.dtsi
|-- fu740-c000-u-boot.dtsi
|-- fu740-c000.dtsi
|-- fu740-hifive-unmatched-a00-ddr.dtsi
|-- hifive-unleashed-a00-u-boot.dtsi
|-- hifive-unleashed-a00.dts
|-- hifive-unmatched-a00-u-boot.dtsi
|-- hifive-unmatched-a00.dts
|-- k210-maix-bit.dts
|-- k210.dtsi
|-- microchip-mpfs-icicle-kit-u-boot.dtsi
|-- microchip-mpfs-icicle-kit.dts
|-- openpiton-riscv64.dts
`-- qemu-virt.dts
- 执行到这里,才真正开始编译 u-boot,主要是以下几行命令
${Q}$(MAKE) -j${NPROC} -C ${UBOOT_PATH} olddefconfig
${Q}$(MAKE) -j${NPROC} -C ${UBOOT_PATH} all
${Q}cat ${UBOOT_PATH}/${UBOOT_OUTPUT_FOLDER}/u-boot.bin > ${UBOOT_PATH}/${UBOOT_OUTPUT_FOLDER}/u-boot-raw.bin
最终产物在 /home/share/samba/risc-v/duo-buildroot-sdk/u-boot-2021.10/build/cv1800b_milkv_duo_sd/u-boot-raw.bin
4、opensbi 编译
有了 u-boot 之后,开始编译 opensbi
为了兼容不同的运行需求,OpenSBI 支持三种类型的 Firmware,分别为: - dynamic:从上一级 Boot Stage 获取下一级 Boot Stage 的入口信息,以 struct fw_dynamic_info 结构体通过 a2 寄存器传递。 - jump:假设下一级 Boot Stage Entry 为固定地址,直接跳转过去运行。 - payload:在 jump 的基础上,直接打包进来下一级 Boot Stage 的 Binary。下一级通常是 Bootloader 或 OS,比如 U-Boot,Linux。
相关编译脚本位置: build/scripts/fip_v2.mk
opensbi: export CROSS_COMPILE=$(CONFIG_CROSS_COMPILE_SDK)
opensbi: u-boot-build
$(call print_target)
${Q}$(MAKE) -j${NPROC} -C ${OPENSBI_PATH} PLATFORM=generic \
FW_PAYLOAD_PATH=${UBOOT_PATH}/${UBOOT_OUTPUT_FOLDER}/u-boot-raw.bin \
FW_FDT_PATH=${UBOOT_PATH}/${UBOOT_OUTPUT_FOLDER}/arch/riscv/dts/${CHIP}_${BOARD}.dtb
根据以上脚本获知,milk-v duo 上采用的是 payload 模式,payload 文件为 u-boot-raw.bin,就是上面我们编译出来的文件。 FW_FDT_PATH 为设备树路径,为 /home/share/samba/risc-v/duo-buildroot-sdk/u-boot-2021.10/build/cv1800b_milkv_duo_sd/arch/riscv/dts/cv1800b_milkv_duo_sd.dtb
编译完成后, 产物在 /home/share/samba/risc-v/duo-buildroot-sdk/opensbi/build/platform/generic/firmware
目录下。
5、fsbl编译
编译完了u-boot 和 opensbi,继续往回推,来到了 fsbl-build。(中间还有一个 rtos 编译,暂时不支持,略过先)。 FSBL 是 First Stage Boot Loader 的缩写。
fsbl-build: u-boot-build memory-map
$(call print_target)
${Q}mkdir -p ${FSBL_PATH}/build
${Q}ln -snrf -t ${FSBL_PATH}/build ${CVI_BOARD_MEMMAP_H_PATH}
${Q}$(MAKE) -j${NPROC} -C ${FSBL_PATH} O=${FSBL_OUTPUT_PATH} BLCP_2ND_PATH=${BLCP_2ND_PATH} \
LOADER_2ND_PATH=${UBOOT_PATH}/${UBOOT_OUTPUT_FOLDER}/u-boot-raw.bin
${Q}cp ${FSBL_OUTPUT_PATH}/fip.bin ${OUTPUT_DIR}/
做种执行的编译命令为
make -j8 -C /home/share/samba/risc-v/duo-buildroot-sdk/fsbl O=/home/share/samba/risc-v/duo-buildroot-sdk/fsbl/build/cv1800b_milkv_duo_sd BLCP_2ND_PATH=/home/share/samba/risc-v/duo-buildroot-sdk/freertos/cvitek/install/bin/cvirtos.bin \
LOADER_2ND_PATH=/home/share/samba/risc-v/duo-buildroot-sdk/u-boot-2021.10/build/cv1800b_milkv_duo_sd/u-boot-raw.bin
主要来看看 fsbl 编译流程,从 fsbl/Makefile 文件开始
all: fip bl2 blmacros
include ${MAKE_HELPERS_DIRECTORY}fip.mk
依次找到 fip 在 fsbl/make_helpers/fip.mk 文件
gen-chip-conf:
$(print_target)
${Q}./plat/${CHIP_ARCH}/chip_conf.py ${CHIP_CONF_PATH}
macro_to_env = ${NM} '${BLMACROS_ELF}' | awk '/DEF_${1}/ { rc = 1; print "${1}=0x" $1 } END { exit !rc }' >> ${BUILD_PLAT}/blmacros.env
blmacros-env: blmacros
$(print_target)
${Q}> ${BUILD_PLAT}/blmacros.env # clear .env first
${Q}$(call macro_to_env,MONITOR_RUNADDR)
${Q}$(call macro_to_env,BLCP_2ND_RUNADDR)
fip: fip-all
fip-dep: bl2 blmacros-env gen-chip-conf
fip-simple: fip-dep
$(print_target)
${Q}echo " [GEN] fip.bin"
${Q}${FIPTOOL} -v genfip \
'${BUILD_PLAT}/fip.bin' \
--CHIP_CONF='${CHIP_CONF_PATH}' \
--NOR_INFO='${NOR_INFO}' \
--NAND_INFO='${NAND_INFO}'\
--BL2='${BUILD_PLAT}/bl2.bin'
${Q}echo " [LS] " $(ls -l '${BUILD_PLAT}/fip.bin')
fip-all: fip-dep
$(print_target)
${Q}echo " [GEN] fip.bin"
${Q}. ${BUILD_PLAT}/blmacros.env && \
${FIPTOOL} -v genfip \
'${BUILD_PLAT}/fip.bin' \
--MONITOR_RUNADDR="${MONITOR_RUNADDR}" \
--BLCP_2ND_RUNADDR="${BLCP_2ND_RUNADDR}" \
--CHIP_CONF='${CHIP_CONF_PATH}' \
--NOR_INFO='${NOR_INFO}' \
--NAND_INFO='${NAND_INFO}'\
--BL2='${BUILD_PLAT}/bl2.bin' \
--BLCP_IMG_RUNADDR=${BLCP_IMG_RUNADDR} \
--BLCP_PARAM_LOADADDR=${BLCP_PARAM_LOADADDR} \
--BLCP=${BLCP_PATH} \
--DDR_PARAM='${DDR_PARAM_TEST_PATH}' \
--BLCP_2ND='${BLCP_2ND_PATH}' \
--MONITOR='${MONITOR_PATH}' \
--LOADER_2ND='${LOADER_2ND_PATH}' \
--compress='${FIP_COMPRESS}'
${Q}echo " [LS] " $(ls -l '${BUILD_PLAT}/fip.bin')
通过一堆复杂的操作。。。生成了一个 bl2.bin 文件。(正常情况下我们开发者也不会去修改这个玩意。。。)
主要关心 fip-all 这个操作。。。用于生成 fip.bin 文件。
6、fip.bin文件合成
查阅官方有限的资料,获知 fip.bin 为内含bootloader+uboot 的文件
为啥要这么干?官方的文档里面是这么说的:
由于原生u-boot编译出u-boot.bin 无法直接刻录到FLASH中。我们采取ARM Trusted Firmware Design中的Firmware Image Package (FIP)方式,将uboot.bin 封装在 FIP.bin里面。
https://doc.sophgo.com/cvitek-develop-docs/master/docs_latest_release/CV180x_CV181x/zh/01.software/OSDRV/U-boot_Porting_Development_Guide/build/html/3_U-boot_Transplant.html
通过 chatgpt 查询 fip 后得知:
FIP(Flexible Image Processor)文件是指存储在ARM架构的处理器设备上的固件映像文件。它主要用于引导和配置设备。FIP文件通常包含以下内容: 1. Trusted Firmware-A(TF-A):TF-A是ARM架构设备上的一个开源的可信固件。它负责设备的引导、安全检查和启动加载程序的执行。 2. U-Boot:U-Boot是一个开源的引导加载程序(bootloader),用于启动设备。它提供了引导设备的功能,并提供了配置和管理设备硬件的选项。 3. ARM Trusted Firmware(ATF):ATF是一组用于安全引导的固件,用于验证和启动设备上的其他软件组件(如操作系统)。 4. 其他组件:FIP文件还可以包含其他固件组件,如设备树(Device Tree)文件、TEE固件(如OP-TEE)、加密密钥和配置参数等。 FIP文件在ARM架构设备上很常见,它们提供了引导和初始化处理器的必要组件。这些文件由设备制造商提供,并根据特定设备、硬件配置和需求进行定制。
按照前面的分析,fip.bin 在 fsbl 最后阶段合成
fip-all: fip-dep
$(print_target)
${Q}echo " [GEN] fip.bin"
${Q}. ${BUILD_PLAT}/blmacros.env && \
${FIPTOOL} -v genfip \
'${BUILD_PLAT}/fip.bin' \
--MONITOR_RUNADDR="${MONITOR_RUNADDR}" \
--BLCP_2ND_RUNADDR="${BLCP_2ND_RUNADDR}" \
--CHIP_CONF='${CHIP_CONF_PATH}' \
--NOR_INFO='${NOR_INFO}' \
--NAND_INFO='${NAND_INFO}'\
--BL2='${BUILD_PLAT}/bl2.bin' \
--BLCP_IMG_RUNADDR=${BLCP_IMG_RUNADDR} \
--BLCP_PARAM_LOADADDR=${BLCP_PARAM_LOADADDR} \
--BLCP=${BLCP_PATH} \
--DDR_PARAM='${DDR_PARAM_TEST_PATH}' \
--BLCP_2ND='${BLCP_2ND_PATH}' \
--MONITOR='${MONITOR_PATH}' \
--LOADER_2ND='${LOADER_2ND_PATH}' \
--compress='${FIP_COMPRESS}'
${Q}echo " [LS] " $(ls -l '${BUILD_PLAT}/fip.bin')
转换成实际执行命令为:
. /home/share/samba/risc-v/duo-buildroot-sdk/fsbl/build/cv1800b_milkv_duo_sd/blmacros.env && \
./plat/cv180x/fiptool.py -v genfip \
'/home/share/samba/risc-v/duo-buildroot-sdk/fsbl/build/cv1800b_milkv_duo_sd/fip.bin' \
--MONITOR_RUNADDR="${MONITOR_RUNADDR}" \
--BLCP_2ND_RUNADDR="${BLCP_2ND_RUNADDR}" \
--CHIP_CONF='/home/share/samba/risc-v/duo-buildroot-sdk/fsbl/build/cv1800b_milkv_duo_sd/chip_conf.bin' \
--NOR_INFO='FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF' \
--NAND_INFO='00000000'\
--BL2='/home/share/samba/risc-v/duo-buildroot-sdk/fsbl/build/cv1800b_milkv_duo_sd/bl2.bin' \
--BLCP_IMG_RUNADDR=0x05200200 \
--BLCP_PARAM_LOADADDR=0 \
--BLCP=test/empty.bin \
--DDR_PARAM='test/cv181x/ddr_param.bin' \
--BLCP_2ND='/home/share/samba/risc-v/duo-buildroot-sdk/freertos/cvitek/install/bin/cvirtos.bin' \
--MONITOR='../opensbi/build/platform/generic/firmware/fw_dynamic.bin' \
--LOADER_2ND='/home/share/samba/risc-v/duo-buildroot-sdk/u-boot-2021.10/build/cv1800b_milkv_duo_sd/u-boot-raw.bin' \
--compress='lzma'
最后分析一下启动流程